Condition Number Estimation of Preconditioned Matrices
نویسنده
چکیده
The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager's method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei's matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei's matrix, and matrices generated with the finite element method.
منابع مشابه
Correction: Condition Number Estimation of Preconditioned Matrices
[This corrects the article DOI: 10.1371/journal.pone.0122331.].
متن کاملA survey of some estimates of eigenvalues and condition numbers for certain preconditioned matrices
Eigenvalue and condition number estimates for preconditioned iteration matrices provide the information required to estimate the rate of convergence of iterative methods, such as preconditioned conjugate gradient methods. In recent years various estimates have been derived for (perturbed) modified (block) incomplete factorizations. We survey and extend some of these and derive new estimates. In...
متن کاملImprovements of two preconditioned AOR iterative methods for Z-matrices
In this paper, we propose two preconditioned AOR iterative methods to solve systems of linear equations whose coefficient matrices are Z-matrix. These methods can be considered as improvements of two previously presented ones in the literature. Finally some numerical experiments are given to show the effectiveness of the proposed preconditioners.
متن کاملConditioning analysis of block incomplete factorizations and its application to elliptic equations
The paper deals with eigenvalue estimates for block incomplete factorization methods for symmetric matrices. First, some previous results on upper bounds for the maximum eigenvalue of preconditioned matrices are generalized to each eigenvalue. Second, upper bounds for the maximum eigenvalue of the preconditioned matrix are further estimated, which presents a substantial improvement of earlier r...
متن کاملAn estimation of the condition number for a class of indefinite preconditioned matrices
We propose a class of preconditioners for symmetric linear systems arising from numerical analysis and nonconvex optimization frameworks. Our preconditioners are specifically suited for large indefinite linear systems and may be obtained as by-product of Krylov-subspace solvers, as well as by applying L-BFGS updates. Moreover, our proposal is also suited for the solution of a sequence of linear...
متن کامل